

零、因次分析

本書無因次群解法參考 3W 書中的解法,考試時題目如無指定解法,建議以白金漢法解之,雷諾分析法的解法較複雜且需設定變數,白金漢法則無此問題,只要一開始所設的變數群和一般讀者所常見無因次群相同則可順利解出,驗算時確認解出之無因次群是否有和常見的無因次有無一致性,可簡單的做辨別解題過程是否有錯,另外如果單位換算觀念比較不好的同學,分不清楚 SI 和 FPS 制的差異,建議可以去翻閱台科大出版社的化工裝置的第一章:單位與因次,可更事半功倍。本章節考的比例上不多,但偶而有單位因次或因次分析的冷箭題型出現必需注意。

(一)因次分析法定義

許多重要的工程問題無法以理論或數學方法完全解決時,必需借助因次分析法(dimensional analysis)來簡化複雜問題,將有關變數做合理歸納,成爲無因次群,並由實驗數據完成變數與函數之間的圖形關係,也可能成爲方程式,以解決工程上難以解決的問題。

(二)白金漢理論(Buckingham π Theory)

- 1.定出變數 n 及採用之基本變數 $r(-般爲M.L.\theta)$;無因次群數目爲 $\pi = n r$ 。
- 2.選r個再現變數(recurring variables)必須使所採用之基本因次皆出現至少一次。
- 3. 將基本因次改以再現變數取代。
- 4.將非再現變數乘以因次倒數,變成無因次群π。
- 5.將無因次群中的基本因次以再現變數取代,即可得到最終之無因次群。

(三)雷諾分析法(Rayleigh 法):保留變數類似 try and error

- 1.列出函數和指數之間的乘積。
- 2.列出函數和指數之間的因次。
- 3.列出因次方程式求指數之間的關係(需保留變數才能解)。
- 4.列出變數間的關係(以無因次群表示)。

(四)因次分析法的優點和缺點:

優點:(1)方程式齊次化。

- (2)找出影響實驗的重要變數。
- (3)作爲量產(scale up)。
- (4)作爲實驗設計的基礎。

缺點:無法得知變數如何影響實驗程度的大小,也就是無法得知數學關係。

類題解析

〈類題 0 − 1〉

流體在管內流動之壓力降(ΔP),因管徑(D)、管長(L) 、流體密度(ρ) 、流體黏度 (μ)和流體速度(u)等變動而變動,試利用白金漢理論(Buckingham π Theory)求出無因次群。

Sol: 先求無因次群的數目: $\pi = n - r = 6 - 3(M.L.\theta) = 3$ 再以因次表示如下:

$$\Delta P = \frac{M}{L\theta^2}$$
 ; $D = L$; $L = L$; $\rho = \frac{M}{L^3}$; $\mu = \frac{M}{L\theta}$; $u = \frac{L}{\theta}$

$$\pi_1 \,:\, (D)^a(u)^b(\rho)^c(\mu) \quad => \!\! \pi_1 = (L)^a(\!\frac{L}{\theta}\!)^b(\!\frac{M}{L^3}\!)^c(\!\frac{M}{L\theta}\!)^c(\!\frac{M}{L\theta}\!)^c(\!\frac{M}{L\theta}\!)^c(\!\frac{M}{\theta}\!)^c(\!\frac{$$

$$M: c+1=0$$
 $c=-1$

L:
$$a + b - 3c - 1 = 0$$
 $a = -1$ $\pi_1 = \frac{Du\rho}{u}$

$$\theta:\,-b-1=0\qquad b=-1$$

$$\pi_2 : (D)^a(u)^b(\rho)^c(\triangle P) => \pi_2 = (L)^a(\frac{L}{\rho})^b(\frac{M}{\Gamma^3})^c(\frac{M}{\Gamma^2})^c(\frac{$$

$$M : c + 1 = 0$$
 $c = -1$

L:
$$a + b - 3c - 1 = 0$$
 $a = 0$ $\pi_2 = \frac{\Delta P}{\rho u^2}$

$$\theta$$
: $-b-2=0$ $b=-2$

$$\pi_3 \, : \, (D)^a(u)^b(\rho)^c(L) \quad \, \pi_3 = (L)^a(\frac{L}{\theta})^b(\frac{M}{L^3})^c(L)$$

$$M : c = 0$$

L:
$$a + b - 3c + 1 = 0$$
 $a = -1$ $\pi_3 = \frac{L}{D}$

$$\theta : -b = 0$$
 $b = 0$

可得此關係如證明:
$$\frac{\Delta P}{\rho u^2} = f(\frac{Du\rho}{u}, \frac{L}{D})$$

(類題 0-2)利用雷諾分析法(Rayleigh 法)解上題:

Sol:由 $\Delta P = f(D \setminus L \setminus \rho \setminus \mu \setminus u) =>5$ 個變數需有 3 個方程式,需保留兩個變數。

$$\diamondsuit \Delta P = f(D^a \cdot L^b \cdot \rho^c \cdot \mu^d \cdot u^e)$$

$$M: 1 = c + d \tag{1}$$

※先保留 d, 方程式内出現最多次,但 c和 e 不能保留否則方程式不能解!

$$L: -1 = a + b - 3c - d + e$$
 (2)

$$\theta: -2 = -d - e \tag{3}$$

$$=>\frac{M}{L\theta^2} = (M)^{c+d}(L)^{a+b-3c-d+e}(\theta)^{-d-e}$$

由
$$(1)$$
式 $c = 1 - d$;由 (3) 式 $e = 2 - d$

$$(1)$$
和 (3) 式代入 (2) 式=>a+b-3 $(1-d)$ -d+ $(2-d)$ =-1=>a=-d-b

%b和 a之間選擇保留 b,但如果保留 a,則方程式解得之無因次群則和一般常見的無因次群不同。

$$=>\Delta P = f(D)^{-d-b}(L)^b(\rho)^{1-d}(\mu)^d \cdot (u)^{2-d}$$

$$=>\frac{\Delta P}{\rho u^2}=f(\frac{Du\rho}{\mu})^{-d}$$
 $(\frac{L}{D})^b$,可得此關係如證明: $\frac{\Delta P}{\rho u^2}=f(Re$, $\frac{L}{D})$

(類題 0-3)攪拌器之動力 P 可因輪葉轉速(N) 、輪葉直徑(D_a) 、液體密度(ρ) 、液體黏度(μ)和重力加速度(g)等變動而變動,試利用白金漢理論(Buckingham π Theory)求出無因次群。

Sol: 先求無因次群的數目: $\pi = n - r = 6 - 3(M.L.\theta) = 3$; 再以因次表示如下:

$$N = \frac{1}{\theta} \; ; \; D_a = L \; \; ; \\ \rho = \frac{M}{L^3} \; \; ; \\ \mu = \frac{M}{L\theta} \; \; ; \\ g = \frac{L}{\theta^2} \; \; ; \; P = \frac{J}{Sec} = \frac{kg \cdot m^2}{sec^3} = \frac{ML^2}{\theta^3}$$

$$\pi_1 : (D_a)^a(N)^b(\rho)^c(P) => \pi_1 = (L)^a(\frac{1}{\theta})^b(\frac{M}{L^3})^c(\frac{ML^2}{\theta^3})$$

$$M: c+1=0$$
 $c=-1$

L:
$$a - 3c + 2 = 0$$
 $a = -5$ $\pi_1 = \frac{P}{D_2^5 N_3 o}$

$$\theta$$
: $-b - 3 = 0$ $b = -3$

$$\pi_2 : (D_a)^a(N)^b(\rho)^c(g) => \pi_2 = (L)^a(\frac{1}{\theta})^b(\frac{M}{L^3})^c(\frac{L}{\theta^2})^a$$

$$M:c=0$$

L:
$$a - 3c + 1 = 0$$
 $a = -1$ $\pi_2 = \frac{D_a N^2}{\sigma}$

$$\theta : -b-2 = 0$$
 $b = -2$

$$\pi_3 : (D_a)^a(N)^b(\rho)^c(\mu) => \pi_3 = (L)^a(\frac{1}{\theta})^b(\frac{M}{L^3})^c(\frac{M}{L\theta})^$$

$$M: c+1=0$$
 $c=-1$

L:
$$a - 3c - 1 = 0$$
 $a = -2$ $\pi_3 = \frac{D_a^2 N \rho}{a}$

$$\theta$$
: $-b-1=0$ $b=-1$

可得此關係如證明:
$$\frac{P}{D_a^5 N^3 \rho} = f(\frac{D_a^2 N \rho}{\mu}, \frac{D_a N^2}{g})$$

(類題 0-4)利用雷諾分析法(Rayleigh 法)解上題:

$$\diamondsuit P = f(N^a \cdot D_a^b \cdot \mu^c \cdot \rho^d \cdot g^e)$$

$$M: 1 = c + d \tag{1}$$

$$L: 2 = b - c - 3d + e$$
 (2)

$$\theta : -3 = -a - c - 2e$$
 (3)

$$=>\frac{ML^2}{\Theta^3}=(M)^{c+d}(L)^{b-c-3d+e}(\Theta)^{-a-c-2e}$$

=> 先保留
$$c$$
 和 e ,因爲方程式內出現最多次=> 由 (1) 式 $c = 1 - d$

$$=>$$
由 $(1)d = 1 - c代入(2)式=>b = 5 - 2c - e, 由 (3) 式 $a = 3 - c - 2e$$

$$=>P = f(N)^{3-c-2e}(D_a)^{5-2c-e}(\mu)^c(\rho)^{1-c}(g)^e$$

$$= > \!\! \frac{P}{D_a^5 N^3 \rho} = f(\frac{D_a^2 N \rho}{\mu})^{-c} (\frac{D_a \ N^2}{g})^{-e}$$

可得此關係如證明:
$$\frac{P}{D_a^5N^3\rho}=f(\frac{D_a^2N\rho}{\mu},\frac{D_a\,N^2}{g})$$

(類題 0-5)流體在管内流動對流熱傳係數(h),因管徑(D)、管長(L) 、管壁和流體溫度差(ΔT)、流體密度(ρ)、流體黏度(μ)、流體速度(u)、熱傳導係數 k、熱容量Cp 等變動而變動,試利用白金漢理論(Buckingham π Theory)求出無因次群。

Sol: 先求無因次群的數目: $\pi = n - r = 9 - 4(M.L.\theta.T) = 5$, 再以因次表示如下:

$$h = \frac{M}{T\theta^3} \, ; \ L = L ; \rho = \frac{M}{L^3} \, ; \mu = \frac{M}{L\theta} \, ; u = \frac{L}{\theta} \, ; \ k = \frac{ML}{T\theta^3} \, ; \ Cp = \frac{L^2}{T\theta^2} \, ; \Delta T = T \, ; \ D = L$$

$$\pi_1: (D)^a(u)^b(\mu)^c(k)^d\rho => \pi_1 = (L)^a(\frac{L}{\rho})^b(\frac{M}{L\rho})^c(\frac{ML}{T\rho^3})^d(\frac{M}{L^3})^c(\frac{M}{T\rho^3})^d(\frac{M}{L\rho})^c(\frac{M}{T\rho^3})^d(\frac{M}{L\rho})^c(\frac{M$$

$$M : c + d + 1 = 0$$
 $c = -1$

L:
$$a + b - c + d - 3 = 0$$
 $a = 1$ $\pi_1 = \frac{Du\rho}{u}$

$$\theta : -b - c - 3d = 0$$
 $b = 1$

$$T: -d = 0$$
 $d = 0$

$$\pi_2 \, : \, (D)^a(u)^b(\mu)^c(k)^dC_p \, => \pi_2 = (L)^a(\frac{L}{\theta})^b(\frac{M}{L\theta})^c(\frac{ML}{T\theta^3})^d(\frac{L^2}{T\theta^2})$$

$$M : c + d = 0$$
 $c = 1$

L:
$$a + b - c + d + 2 = 0$$
 $a = 0$ $\pi_2 = \frac{C_p \mu}{k}$

$$\theta$$
: $-b-c-3d-2=0$ $b=0$

$$T: -d-1=0$$
 $d=-1$

$$\pi_3 \, : \, (D)^a(u)^b(\mu)^c(k)^d \Delta T => \pi_3 = (L)^a (\frac{L}{\theta})^b (\frac{M}{L\theta})^c (\frac{ML}{T\theta^3})^d (T)$$

$$M : c + d = 0$$
 $c = -1$

L:
$$a + b - c + d = 0$$
 $a = 0$ $\pi_3 = \frac{u^2 \mu}{k \Delta T}$

$$\theta$$
: $-b-c-3d = 0$ $b = -2$

$$T: -d+1=0$$
 $d=1$

$$\pi_4 : (D)^a(u)^b(\mu)^c(k)^dL => \pi_4 = (L)^a(\frac{L}{\theta})^b(\frac{M}{L\theta})^c(\frac{ML}{T\theta^3})^d(L)$$

$$M : c + d = 0$$
 $c = 0$

L:
$$a + b - c + d + 1 = 0$$
 $a = -1$ $\pi_4 = \frac{L}{D}$

$$\theta : -b-c-3d = 0$$
 $b = 0$

$$T: -d = 0$$
 $d = 0$

$$\pi_5 \,:\, (D)^a(u)^b(\mu)^c(k)^dh \,=> \!\! \pi_5 = (L)^a(\!\frac{L}{\theta}\!)^b(\!\frac{M}{L\theta}\!)^c(\!\frac{ML}{T\theta^3}\!)^d(\!\frac{M}{T\theta^3}\!)^d$$

$$M : c + d + 1 = 0$$
 $c = 0$

L:
$$a + b - c + d = 0$$
 $a = 1$ $\pi_5 = \frac{hD}{k}$

$$\theta$$
: $-b-c-3d-3=0$ $b=0$

$$T: -d-1=0$$
 $d=-1$

(類題 0-6)(93 化工技師)(20 分)

在攪拌槽中進行液體攪拌所需要的功率(P)與許多操作變數有關,例如:液體的黏度(μ)與密度(ρ)、攪拌翼的直徑(d)與轉速(N)、重力加速度(g)及攪拌槽直徑(D)等...。(-)試以因次分析法推導影響攪拌操作的重要無因次群(dimensionless group)。(-)經由實驗室的測試後,在攪拌槽的規模放大時,需注意那些原則? Sol:(-)先求無因次群的數目: $\pi = n - r(M.L.\theta) = 7 - 3 = 4$

再以因次表示如下:
$$N=\frac{1}{\theta};\; D=L\; ; \rho=\frac{M}{L^3}\; ; \mu=\frac{M}{L\theta}\; ; g=\frac{L}{\theta^2}\; ;$$

$$P = \frac{J}{Sec} = \frac{kg \cdot m^2}{sec^3} = \frac{ML^2}{\theta^3}; d = L$$

$$\pi_1 : (D)^a(N)^b(\rho)^c(P) => \pi_1 = (L)^a(\frac{1}{\theta})^b(\frac{M}{L^3})^c(\frac{ML^2}{\theta^3})$$

$$M: c+1=0$$
 $c=-1$

L:
$$a - 3c + 2 = 0$$
 $a = -5$ $\pi_1 = \frac{P}{D^5 N^3 \rho}$

$$\theta$$
: $-b-3=0$ $b=-3$

$$\pi_2 : (D)^a(N)^b(\rho)^c(g) => \pi_2 = (L)^a(\frac{1}{\rho})^b(\frac{M}{L^3})^c(\frac{L}{\rho^2})$$

$$M : c = 0$$

L:
$$a - 3c + 1 = 0$$
 $a = -1$ $\pi_2 = \frac{DN^2}{g}$

$$\theta$$
: $-b-2=0$ $b=-2$

$$\pi_3: (D)^a(N)^b(\rho)^c(\mu) => \pi_3 = (L)^a(\frac{1}{\theta})^b(\frac{M}{L^3})^c(\frac{M}{L\theta})^a(\frac$$

$$M: c+1=0$$
 $c=-1$

L:
$$a - 3c - 1 = 0$$
 $a = -2$ $\pi_3 = \frac{D^2 N \rho}{U}$

$$\theta$$
: $-b-1=0$ $b=-1$

$$\pi_4 : (D)^a(N)^b(\rho)^c(d) => \pi_4 = (L)^a(\frac{1}{\rho})^b(\frac{M}{L^3})^c(L)$$

$$M:c=0$$

L:
$$a - 3c + 1 = 0$$
 $a = -1$ $\pi_4 = \frac{D}{d}$

$$\theta : -b = 0$$
 $b = 0$

(二)必須注意攪拌槽內流體流動所造成的溫度變化、濃度變化,甚至在連續操作 系統內所產生的滯留時間不均勻所引起的問題,另外流體黏度、流體速度等變化 也需一並考量,才不至於偏離量產後的實際狀況。

歷屆試題解析

(考題 0-1)(84 高考二等)(20 分)

在強制對流流過圓球時,假設對流熱傳係數h和以下變數有關:球直徑D,流體熱傳導係數k,流體密度 ρ ,流體黏度 μ ,流體熱容量Cp及流體速度V。根據因次分析原理,可得到幾個無因次群?

Sol:
$$\pi = n - r(M. L. \theta. T) = 7 - 4 = 3$$

(考題 0-2)(90 簡任升等)(5 分)

説明輸送現象在化學工程中所扮演的角色?

Sol:將物理現象加以分析寫成統御方程式(governing equation)加上觀察到的邊界條件(boundary conditions)接著解出來得到一個理論公式供化工機械設計之用。

(考題 0-3)(84 高考二等)(20 分)

今考慮圓管內流體與管壁間之質傳現象,其中重要的變數包括: Tube diameter D, 流速 u, 流體密度 ρ , 流體黏度 μ , 擴散係數 D_{AB} , 質傳係數 k_c 等。請運用因次分析法,建立下述關係: Sh=f(Re,Sc)

Sol: 先求無因次群的數目: $\pi = n - r(M.L.\theta) = 6 - 3 = 3$, 再以因次表示如下:

$$u=\frac{L}{\theta}\,;~D=L~;\rho=\frac{M}{L^3}~;\mu=\frac{M}{L\theta}~;~k_c=\frac{L}{\theta}~;~D_{AB}=\frac{L^2}{\theta}$$

$$\pi_1\,:\,(D)^a(\rho)^b(D_{AB})^c(\mu) => \pi_1 = (L)^a(\tfrac{M}{L^3})^b(\tfrac{L^2}{\theta})^c(\tfrac{M}{L\theta})$$

$$M: b + 1 = 0$$
 $b = -1$

L:
$$a - 3b + 2c - 1 = 0$$
 $a = 0$ $\pi_1 = \frac{\mu}{\rho D_{AB}} = Sc$

$$\theta$$
: $-c-1=0$ $c=-1$

$$\pi_2 \,:\, (D)^a(\rho)^b(D_{AB})^c(k_c) \quad => \pi_2 = (L)^a(\tfrac{M}{L^3})^b(\tfrac{L^2}{\theta})^c(\tfrac{L}{\theta})^c(\tfrac{L}{\theta})^c(\tfrac{L^2}{\theta})^c(\tfrac{L}{\theta})^c(\tfrac{L}{\theta})^c(\tfrac{L^2}{\theta})^c(\tfrac{L}{\theta})^c(\tfrac{L^2}{\theta})^c(\tfrac{L}{\theta})^c(\tfrac{L^2}{\theta})^c(\tfrac{L$$

$$M : b = 0$$

L:
$$a - 3b + 2c + 1 = 0$$
 $a = 1$ $\pi_2 = \frac{k_c D}{D_{AB}} = Sh$

$$\theta: -c-1=0 \qquad c=-1$$

$$\pi_3 : (D)^a(\rho)^b(D_{AB})^c(u) => \pi_3 = (L)^a(\frac{M}{L^3})^b(\frac{L^2}{\theta})^c(\frac{L}$$

$$M : b = 0$$

L:
$$a - 3b + 2c + 1 = 0$$
 $a = 1$ $\pi_3 = \frac{Du}{DAB} = \frac{Du\rho}{U} = Re$

$$\theta$$
: $-c-1 = 0$ $c = -1$

(考題 0-4)(92 簡任升等)(每小題 3 分,共 30 分)

請寫出下列各名詞之 SI 單位。(一)黏性應力(viscous stress)(二)表面張力(surface tension)(三)動量通量(momentum flux)(四)黏度(viscosity)(五)動黏度(kinematic viscosity)(六)熱導度(thermal conductivity)(七)熱傳係數(heat transfer coefficient)(八)比熱(specific heat)(九)擴散係數(diffusion coefficient)(十)質傳係數(mass transfer coefficient)(105 高考二等)

Sol:
$$(-)\tau_{yx} = -\mu \frac{dV_x}{dy} = \frac{kg}{m \cdot sec^2}$$
 $(-)\sigma = \frac{N}{m} = \frac{\frac{kg \cdot m}{sec^2}}{m} = \frac{kg}{sec^2}$

$$(\tilde{=})\,\tau_{yx} = -\frac{\mu}{\rho}\frac{d(\rho u_x)}{dy} = \frac{kg}{m\cdot sec^2}\,\,(\boldsymbol{\Box})\mu = \frac{kg}{m\cdot sec}\,\,(\boldsymbol{\Xi})\,\upsilon = \frac{\mu}{\rho} = \frac{m^2}{Sec}$$

$$(\vec{r}) k = \frac{W}{m \cdot k} = \frac{\frac{N \cdot m}{\text{sec}}}{m \cdot k} = \frac{kg \cdot m}{\text{sec}^{3} \cdot k} (+) h = \frac{W}{m^{2} \cdot k} = \frac{J}{m^{2} \cdot k} = \frac{J}{m^{2} \cdot \text{sec} \cdot k}$$

$$(\nearrow)C_p = \frac{m^2}{\sec^2 \cdot k} (\nearrow)D_{AB} = \frac{m^2}{\sec} (\nearrow)k_c = \frac{m}{\sec}$$

(考題 0-5)(84 第二次化工技師)(每小題 3 分,共 30 分)

請寫出下列各名詞之 SI 單位。(一)應變率(viscous stress)(二)雷諾應力(Reynolds stress)(三)黏度(viscosity)(四)動力黏度(viscosity)(五)熱通量(Heat flux)(六)熱導度 (thermal conductivity)(七)比熱(specific heat)(八)擴散係數(diffusion coefficient)(九)熱傳係數(heat transfer coefficient)(十)質傳係數(mass transfer coefficient)

$$Sol: (-)\frac{dV_x}{dy} = \frac{1}{sec} \quad (-)\tau = \rho u_x u_x = \frac{kg}{m \cdot sec^2} \ (-)\mu = \frac{kg}{m \cdot sec}$$

$$(\mathfrak{P})\upsilon = \frac{\mu}{\rho} = \frac{m^2}{\text{sec}} \quad (\mathfrak{F}) \ q = \frac{W}{m^2} = \frac{\frac{N \cdot m}{\text{sec}}}{m^2} = \frac{N}{m \cdot \text{sec}} = \frac{kg}{\text{sec}^3} \ (\dot{\tilde{r}}) \ \alpha = \frac{k}{\rho C_n} = \frac{m^2}{\text{sec}}$$

$$\begin{array}{l} (\pm)C_p = \frac{m^2}{sec^2 \cdot k} \ (\triangle)D_{AB} = \frac{m^2}{sec} \quad (\pm) \ h = \frac{W}{m^2 \cdot k} = \frac{\frac{J}{sec}}{m^2 \cdot k} = \frac{J}{m^2 \cdot sec \cdot k} \\ (\pm) \ k_c = \frac{m}{sec} \end{array}$$